
Experience Teaching RISC-V Assembly Programming with Moodle

Atti del MoodleMoot Italia 2023 – ISBN 978-88-907493-9-1 211

EXPERIENCE TEACHING RISC-V ASSEMBLY PROGRAMMING
WITH MOODLE

Idilio Drago1, Sergio Rabellino1, Enrico Cassano2, Saverio Accurso2
1 University of Turin, Computer Science Department

{idilio.drago,sergio.rabellino}@unito.it
2 University of Turin, Course degree in Computer Science

{enrico.cassano,saverio.accurso}@edu.unito.it

— FULL PAPER —

TOPIC: Higher Education

Abstract
RISC-V is an open-source Instruction Set Architecture (ISA) designed to be simple,
modular, and extensible, making it a versatile choice for a wide range of applications. It is,
therefore, an excellent ISA option for teaching computer architectures and assembly
programming, and indeed it is starting to be adopted by a range of textbooks on the topic.
Given the middle-level nature of the language, it is usually challenging for students to test
the correctness of their code and run their programs in practice. This high entry barrier
often results in a difficult learning experience, reducing the effectiveness of the learning
process.

We here describe our experience in teaching computer architectures using Moodle. In
addition to creating a vast amount of material in the form of classic self-evaluation quizzes,
we have developed a pipeline to simplify the preparation of programming exercises using
the RISC-V language. Our pipeline allows instructors to prepare questions and unit tests
to verify the questions. We have been using this environment at the University of Turin for
two academic years, with more than 1000 students already using it for both self-study and
exams. We describe our tools and initial experience using them. We contribute with our
source code and a large database of questions open to the community as open source.

Keywords – RISC-V, Moodle quiz, Code Runner, adaptive teaching, automated exams.

 INTRODUCTION
The RISC-V Instruction Set Architecture (ISA) [1] has garnered significant recognition in recent years
as an open-source, versatile, and modular computing framework. Designed to accommodate a wide
array of applications, ranging from resource-constrained embedded systems to high-performance
supercomputers, RISC-V stands out as a choice for teaching computer architectures and assembly
programming. The fact the assembly code is simple and extensible makes it particularly well-suited for
educational purposes, leading to its adoption in various textbooks [2].

Yet, learning assembly programming in general is a challenging task, primarily due to the inherently
middle-level nature of this type of computer language, which uses predefined words called mnemonics
that describe actions and operands like cpu registries or memory addresses, composing algorithms that
can be directly translated to the low-level machine language [11]. Students often find it daunting to
validate the correctness of their code and execute their programs effectively, creating a high entry barrier
that can hinder the learning experience. Traditionally, courses in assembly programming have turned to
simulators and emulators to mitigate these complexities, enabling students to gain hands-on experience
without the intricacies of real machine execution. Nonetheless, these tools often lack the means to
provide timely and informative feedback to students regarding their projects.

Experience Teaching RISC-V Assembly Programming with Moodle

212 Atti del MoodleMoot Italia 2023 – ISBN 978-88-907493-9-1

We here share our experiences in addressing these challenges by utilizing Moodle as an instructional
platform for RISC-V assembly programming. We have generated an extensive repository of educational
materials, including selfassessment quizzes as well as developed a pipeline for simplifying

Figure 1 – Question preparation pipeline. The “Checker” module is also installed in the Moodle

CodeRunner back-end (Jobe) to validate students’ submissions

the creation of programming exercises that use the RISC-V assembly language. Our pipeline helps
instructors design meaningful and engaging questions, along with unit tests to evaluate student
responses using CodeRunner [7]. Over the course of two academic years, the solution has been used
at the University of Turin, engaging over 1000 students in self-study and exams.

Here we provide a brief description of the developed tools and share our initial experiences with their
application. This analysis has required new instruments to extract data about the students’ engagement
with the platform. We thus have developed a new Moodle plugin to allow us to export detailed statistics
on the students’ tentatives history when engaging with the CodeRunner questions. To broaden the
impact of our work, we make the source code of our question preparation pipeline, our database of
RISC-V questions (https://github.com/idrago/ArchI-exercise), and our Moodle plugin available to the
community as open-source (plugin will be submitted to the Moodle plugin database). By doing so, we
aim to contribute to the teaching of RISC-V and assembly programming, ultimately facilitating a more
effective and accessible learning experience for students and educators alike.

 ARCHITECTURE AND SYSTEM DESIGN

2.1 The pipeline from the teacher’ point of view
Figure 1 shows the pipeline used for preparing the RISC-V programming questions in our system. The
main components are:

• Checker: a Python module that takes as input

o a RISC-V source code containing the function to be tested and a test driver (main) that
calls the particular function,

o a source file with supporting macros (common to all questions), and

o a set of unit tests. It runs all unit tests on the code using the test driver and produces a
report of the results in textual form. The Checker is also installed in the Moodle
CodeRunner backend (Jobe) to validate students’ submissions.

• Generator: a second Python module that takes as input the same files as above and an additional
HTML file containing the question text. It produces PDF handouts (using pandoc) and the XML
file to import the question into Moodle.

The Checker is the key module of the pipeline. We use a state-of-the-art compiler (GCC) for cross-
compiling RISC-V code and run it in a simulation environment [3]. We use specifically Spike [9] as a
simulator, with the RISC-V’s Proxy Kernel (pk)[10] to proxy system calls and execute programs in a
Linux kernel over a different architecture. Given the above setup, the process of preparing a question
involves the writing of three input files:

5. the question text;

Experience Teaching RISC-V Assembly Programming with Moodle

Atti del MoodleMoot Italia 2023 – ISBN 978-88-907493-9-1 213

6. the solution code;

7. the unit tests.

The question text is an ordinary HTML document that can contain any HTML tags, from font formatting
to links and embedded images. Figure 2 provides an example of a solution file that must be provided by
the instructor. The solution code is a RISC-V assembly program that contains the function to be tested
and a test driver (main). The code must contain a standalone program ready to run on Spike, and it may
use several macros that are available to help verify the correctness of the solution.

Figure 2: Example of source code provided during the preparation of a question. Here students
are asked to write a function that compares two elements of an array. The driver uses macros
present in the support.S file to initialize the registers with arbitrary values, print the content of

Experience Teaching RISC-V Assembly Programming with Moodle

214 Atti del MoodleMoot Italia 2023 – ISBN 978-88-907493-9-1

the register a0 that must contain the function return value, and check whether the student
solution respects the RISC-V calling conventions. Annotations are used to mark the solution,

the driver, and the position where the unit tests will be inserted by the Checker.

For example, we provide macros to initialize the registers with arbitrary constants – e.g., useful to check
whether students’ solutions assume that registers would contain particular values when the program
starts – to print the content of the registers as well as to check RISC-V calling conventions. The source
code must be annotated with special tags that mark what should be considered i) the solution of the
exercise, ii) the test driver, and iii) the position where unit tests should be inserted when verifying the
solution. In the source code, the test cases are positioned at the end of the file. The Checker will replace
the static test with the test cases provided by the instructor.

Figure 3: Examples of unit tests checking different properties.

The test cases are written in YAML and contain a piece of code for the test, the expected output of the
driver, and the display mode, which controls whether the case should be shown as feedback to students
or not.

Figure 3 shows two examples of unit tests. In the first, relative to the program seen in Figure 3(a), the
instructor has specified different arrays and indexes to the function, and the tests verify whether the
function returns on the register a0 the expected value. In Figure 3(b) the tests for a more complex
example are shown, in which the the driver prints the contents of an array, which are verified against
the expected values.

2.2 Technical details on implementation
For the purposes of this experimentation, we had two goals:

• having all the RISC-V environment directly available from Moodle to simplify the interaction for
teachers and students

• having a simple way to extract quiz attempts history information for each quiz in a manageable
format for extracting statistics informations on RISC-V tools usage.

The first goal was achieved enhancing the yet running coderunner cluster [6], by adding to the dockered
“JobeInABox” [8] the needed packages to build and run RISC-V programs: the Spike RISC-V ISA
Simulator [9] and the RISC-V Proxy Kernel and Boot Loader [10].

Experience Teaching RISC-V Assembly Programming with Moodle

Atti del MoodleMoot Italia 2023 – ISBN 978-88-907493-9-1 215

An example of added code near the end of the jobeinabox dockerfile based on Ubuntu 22.04 follows:

For RISC-V purposes

RUN apt-get install -y gcc-riscv64-unknown-elf

RUN apt-get install -y gcc-riscv64-linux-gnu

WORKDIR /root

RUN git clone https://github.com/riscv-software-src/riscv-isa-sim

RUN git clone https://github.com/riscv-software-src/riscv-pk

RUN apt-get install -y device-tree-compiler

RUN cd riscv-isa-sim && \

 mkdir build && \

 cd build && \

 ../configure --prefix=/opt/RISCV && \

 make && \

 make install

RUN cd riscv-pk && \

 mkdir build && \

 cd build && \

 ../configure --prefix=/opt/RISCV --host=riscv64-linux-gnu && \

 make && \

 make install

ENV PATH="/opt/RISCV/bin:/opt/RISCV/riscv64-linux-gnu/bin:${PATH}"

RUN cd /usr/bin; ln -s /opt/RISCV/riscv64-linux-gnu/bin/pk .

These additions gives the RISC-V functionalities to CodeRunner server without the complexity of adding
a new language; deploying the docker image built using the modified dockerfile to each of the cluster’s
nodes it’s done with standard docker image save/load and subsequently jobeinabox instances run with
standard configuration.

Our cluster was proven to support 3/400 contemporary users doing exams with optimal performances
and no interruptions of service [6].

The second goal was fulfilled by creating a quiz report plugin capable of extracting the attempts history
of each student for a quiz. This task could be also done with the “Configurable Reports” plugin, but
stated that having a downloadable format of the attempts histories could be a remarkable feature not
only for us, but for every teacher doing exams, we opted for building a quiz report that export the history
data in CSV format, which it’s automatically available to all teachers.

The teacher could process the downloaded attempts history in CSV format to extract useful information
on effective path followed by the students doing a quiz, focusing on particular phenomena and exploiting
autonomous learning analytics on quiz attempts.

The plugin mimics the “export quiz attempts” plugin behaviour, by adding a new menu item to the quiz
results items called “Attempts export CSV” (figure 4), which in turn presents a classical quiz attempts
choice where the action button starts the history download.

At the time of writing the plugin works with minimal optional features, but we would like to discuss with
the people at the MoodleMoot about plugin functionalities to be added/removed, giving a chance to
enhance this little but, we think, useful plugin.

Experience Teaching RISC-V Assembly Programming with Moodle

216 Atti del MoodleMoot Italia 2023 – ISBN 978-88-907493-9-1

Figure 4: some screenshot of the Attempts export CSV Moodle plugin

 EARLY DEPLOYMENT EXPERIENCE

3.1 Question Dataset
Our CodeRunner RISC-V solution and our question preparation pipeline have been used in two
academic years at the University of Turin to support the course of Computer Architecture in the
Computer Science Bachelor’s degree. In the first year, the system was used primarily for exams, while
in the second year, the question dataset was extended and self-assessment quizzes were put online
during the semester. In total, the system has supported more than 1000 students in both exams and
self-assessments. The dataset contains both classic quiz questions to test theoretical aspects and more
than 50 programming questions produced with our pipeline. Our programming questions cover a wide
spectrum of skills, including arithmetic operations (addition, subtraction, division), logic operations;
memory load and store of different data types, control flow instructions (branches and jumps), stack
manipulation, bit-wise operations, and addressing (e.g., immediate).

Most of the questions are written in Italian, but our goal is to extend and translate all questions to English
soon. All programming questions follow the same pattern in which a main function is provided in the text
of the question, and students are asked to write a function that is called by this main. The main function
works as the driver and calls the student solution. Follow-up questions are also present in which students
must develop more advanced functions, using their previously answered ones, to test their abilities to
call nested functions.

3.2 Deployment
The Moodle plugin developed allows for the seamless export of students’ complete attempt history in
an exercise, capturing every action undertaken by both students and teachers for each attempt. Without
this plugin, one would need to resort to direct database export [4]. The information exported by our
plugin includes the initial pre-checking steps and any subsequent manual corrections made by teachers
during the evaluation process. We have deployed the CodeRunner RISC-V solution in our production
Moodle system. We evaluate results from three computer architecture exam seasons, which involved
over 900 students’ solutions to questions within approximately 500 quizzes. Students have access to
an external simulator during the exams, known as RARS [5], offering them the freedom to develop and
test their solutions independently. The use of Moodle CodeRunner to check their answers thus remains
optional, while all submissions are later manually evaluated by teachers.

Notice that, during exams, we set up CodeRunner to provide only a semaphore indicating whether the
solution is completely correct or not. No other feedback is given, and thus students have an incentive to
use primarily RARS as a debugging environment.

Next, we delve into usage patterns, tracking how students have engaged with our CodeRunner RISC-
V solution. We scrutinize how their grading evolves from the initial submission to the final assessment,
getting initial insights into the effect of feedback from CodeRunner usage in their exam trajectory.

Experience Teaching RISC-V Assembly Programming with Moodle

Atti del MoodleMoot Italia 2023 – ISBN 978-88-907493-9-1 217

 EXPERIENCE ON EXAMS
We characterize the use of our CodeRunner RISC-V solution. Figure 5a shows the number of
corrections for each question in the evaluated exams. We observe that only a minor fraction of the
attempts (around 10%) are closed with a single correction. These cases typically involve situations in
which only the automatic system correction has been applied, and we manually confirm that they are
mostly related to instances where students have not engaged with the given question.

In approximately half of the attempts, the system has been invoked 4-5 times. However, we also notice
attempts in which students resort to the system dozens of times, with some attempts accumulating more
than 40 corrections. Based on usage logs, these cases appear to be situations in which some students
decide to skip the external simulator and develop their solutions directly within CodeRunner, even
without detailed feedback.

To delve further into this data, Figure 5b displays the average number of checks performed by our
system in relation to the final grade manually assigned by the teacher. While differences are subtle,
interesting patterns emerge. Firstly,students who achieve the highest grades tend to rely less on our
CodeRunner solution. These cases include several students who produce perfect solutions in RARS,
using CodeRunner for a final check before closing the quiz. More interestingly, we see that students
with partial but good grades are the ones relying the most on CodeRunner. The number of checks per
attempt increases.

(a) Students’ corrections per tentative

(b) Average checks per final grade ranges

Fig. 5: General statistics of students’ manual checks observed during exams.

from approximately 6 for students receiving the lowest grades (0.0-0.2) to about 8 for those obtaining
near-perfect grades (0.6-0.8).

Experience Teaching RISC-V Assembly Programming with Moodle

218 Atti del MoodleMoot Italia 2023 – ISBN 978-88-907493-9-1

Fig. 6 - Grades i) in the first delivery; ii) in the last automatic grading; and iii) manually

assigned by the instructor. Students use an external simulator during exams and CodeRunner
checks are offered as an additional resource.

Figure 6 complements the analysis by showing the number of tentatives per grade range in three
different moments: i) after the correction of the first students’ delivery; ii) after the automatic correction
of the last students’ delivery; iii) after manual correction.

Comparing the two left-most plots, we see that the number of solutions with the best grades more than
doubles from the first to the last delivery. This is somehow expected and can be partly explained by the
curiosity of students who start to deliver solutions in CodeRunner even before properly debugging it in
RARS. Yet, it demonstrates the interest of students in obtaining early feedback during exams, which is
precisely the outcome we expected when building the CodeRunner RISC-V solution.

The right-most plot shows how the tentatives are distributed according to the final question grades
manually assigned by teachers. As our CodeRunner solution cannot assign partial grades, it is expected
that grades get distributed over the range when manually evaluated. It is interesting to observe how the
number of students achieving near-perfect grades (0.6-0.8) is actually the smallest among all ranges.
Recall that those are the students relying the most on the CodeRunner RISC-V solution to check their
answers. That is, we observe students who heavily resort to the system – while also debugging in RARS
– to try to improve their answers. This behavior again points to a positive feedback loop in terms of
learning outcomes, since it pushes students to think more thoroughly about their answers.

 CONCLUSIONS
We have outlined our efforts in integrating a CodeRunner RISC-V environment into Moodle,
encompassing both a question writing pipeline and the Moodle back-end for automating the correction
of students’ submissions. Our solution has been utilized to support students in the Computer
Architecture course at the University of Turin. We have successfully implemented this solution in our
production Moodle installation for two academic years. Additionally, to facilitate the analysis of the
impact of our solution, we have introduced a Moodle plugin to export detailed statistics regarding
question attempts. Our data reveals that students actively engage with our CodeRunner RISC-V
solution, both for self-assessment throughout the semester and during examinations. We consider this
a positive outcome since students have access to an external RISC-V simulator for debugging (RARS).
While it is premature to draw precise conclusions regarding its impact on learning outcomes, the
observed level of engagement suggests a positive influence. In the future, we plan to expand our
analysis by more effectively tracking progress from the beginning of the semester and incorporating
students’ qualitative feedback into the evaluation process.

BIBLIOGRAPHY

[1] A. Waterman, Y. Lee, D. Patterson, K. Asanovic, V. I. U. level Isa, A. Waterman, Y. Lee, D.
Patterson, The risc-v instruction set manual, Volume I: User-Level ISA’, version 2 (2014).

[2] D. Patterson, Computer organization and design risc-v edition: the hardware (2017).

[3] B. Goossens, Installing and using the risc-v tools, in: Guide to Computer Processor Architecture: A
RISC-V Approach, with High-Level Synthesis, Springer, 2023, pp. 87–103.

Experience Teaching RISC-V Assembly Programming with Moodle

Atti del MoodleMoot Italia 2023 – ISBN 978-88-907493-9-1 219

[4] Moodle, Overview of the Moodle question engine (2023).
https://docs.moodle.org/dev/Overview_of_the_Moodle_question_engine#Detailed_data_about_an
_attempt

[5] RARS, RISC-V Assembler and Runtime Simulator (2023). https://github.com/TheThirdOne/rars

[6] Un assetto Moodle per l’esame online di un corso di programmazione, F. Cardone, S. Rabellino,
L. Roversi, Atti del MoodleMoot Italia 2021 (2021), AIUM, 2021, pp. 45-52

[7] Moodle plugins directory: CodeRunner, https://moodle.org/plugins/qtype_coderunner

[8] Jobe In a Box, https://github.com/trampgeek/jobeinabox

[9] Spike RISC-V ISA Simulator, https://github.com/riscv-software-src/riscv-isa-sim

[10] RISC-V Proxy Kernel and Boot Loader, https://github.com/riscv-software-src/riscv-pk

[11] Computer Languages, https://www.cs.mtsu.edu/~xyang/2170/computerLanguages.html

